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1. Introduction

Equilibrium, compatibility and constitutive relationship are
the general tools which should be satisfied in elastic analysis
of structures. In plastic analysis and design, equilibrium,
mechanism and yield are three conditions which should be
fulfilled in order to obtain the unique solution. Since the
design spaces in plastic problems are complicated, thus the
lower and upper bounds of the solution are often explored. By
satisfying the equilibrium and selecting an arbitrary moment
distribution in which no moment exceeds the plastic moment
of the members, i.e. satisfying the yield condition, the safe or
lower bound approach is formulated. The maximum load
obtained by this method represents the plastic limit load. On
the other hand, if a mechanism is assumed for a structure and
the equilibrium is satisfied, then the unsafe or upper bound
approach is created. The best value of the plastic limit load is
the lowest value obtained from all mechanisms considered. It
should be noted that the mechanism and yield conditions
might be violated in lower and upper bound approaches,
respectively. Hence, plastic analysis and design can be
interpreted as an optimization problem [1,2].

Plastic analysis and design of frames was cast in the form of
linear programming by Charnes and Greenberg [3], as early as

1951. Further progress in the field is due to Heyman [4],
Horne [5], Baker and Heyman [6], Jennings [7], Kirsch [8],
Theirauf [9], Kaveh [10], Kaveh and Khanlari [11] and Kaveh
and Mokhtarzadeh [23] among many others. 

In recent years finite element analysis (FEA) has become a
widely used tool for practicing engineers of many disciplines.
Structural optimization, however, has achieved far less
popularity in practice despite the extraordinary progress of the
optimization theory and associated algorithms over the past three
decades. This situation is caused to a large extent by the
mathematical complexities of the existing optimization methods. 

Since 1992 researchers have tried to bridge the gap between
FEA and structural optimization by developing a very simple
approach to optimal structural design. It is based on the concept
of slowly removing inefficient materials from a structure so that
the residual structure evolves towards the optimum. This is
named evolutionary structural optimization (ESO).   

The ESO method proves to be capable of solving size, shape
and topology structural optimization for static, dynamic, stability
and heat transfer problems or combinations of these [12,13]. The
ESO method appeals to practicing engineers and architects
particularly because of its simplicity and effectiveness.

In order to optimum design of frames several optimization
methods such as heuristic algorithms [15-20], optimality
criteria [21] and graph theoretical [22-23] methods are used.
In this paper, the ESO method is utilized for plastic design of
two dimensional frames and some criteria are derived in order
to form a simple structural evolutionary optimization problem.
The total weight of the structure is minimized and by making
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use of safe theorem the stiffness of each member is adjusted
according to limited corresponding moments. In other words,
the weight of the structure is minimized while the equilibrium
and yield condition are satisfied. Four examples are considered
to verify and illustrate the performance of the method.

2. Optimization problem

The aim of the optimization problem is to minimize the
weight of structure while, based on safe theorem, equilibrium
and yield condition to be fulfilled. Therefore, the optimization
problem can be written as follows

(1)

where αe are βe design variables of optimization problem,
Me(βe )are existed moment at the ends of element e which varies
depending on the stiffness of the element, is the plastic
moment of member e in each iteration of optimization which
depends on  αe. In this method, αe can be interpreted as an index
for minimizing the weight of element and βe are indices for
satisfying the yield condition at the both ends of the element e.

Let be the upper bound of plastic moment for element e
which is obliged by user because of construction constraints.
Then, can be expressed as

(2)

Since 0OαeO1, therefore, It is noticed that if
αe=0, it means that the element e can be removed from the
structure layout whereas αe=1 means that the biggest available
section (plastic moment) should be used for element e. In this
situation (αe=1) obtained moment from elastic analysis can be
greater than plastic moment i.e. the yield condition is violated.
In order to satisfy the yield condition, β is introduced which can
be written as below for one dimensional linear finite element

(3)

where superscripts 1 and 2 refer to the start and the end point
of the element e as shown in Figure 1. 

Force-displacement relationship for each finite element can
be written as 

(4)
Equation (4) should be modified if one end of the member

has a hinge that causes the corresponding force to be equal to
zero [14]. The nth component of fe can be written as follows

(5)

If then corresponding displacement component can

be written as [14]

(6)

By substituting (6) into the other five equilibrium equations,
the unknown un can be eliminated and the corresponding row
and column are set to zero. Therefore, (4) should be replaced by 

(7)

The new stiffness terms are as follows [14]:

(8)

This procedure is applied to release the nth component of  fe

matrix. By introducing the parameter β, the related component
of fe can be evaluated according to the values of .

(9)

where  varies from zero to one, i.e. 0OβeO1 . If βe is equal
to one, then the related degree of freedom is released,and if it
is equal to zero, then . According to (5) moments at the
start and the end of members can be written as   follows 

(10)

(11)

3. Evolutionary structural optimization algorithm

The evolutionary structural optimization (ESO) method is
based on the simple concept of gradually removing underutilized
material from a structure so that the resulting form evolves
towards an optimum [12, 13]. Here, the material of a member is
reduced when its moments are little than plastic moment and will
be increased when those are bigger. On the other hand, since a
member can not be considered bigger than a maximum
considered section, therefore, the flexural stiffness of member
should be modified according to (11) so that the corresponding
moments obtained to be at least the same as plastic moments.
The procedure should be repeated until all moments are little
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Fig. 1. Typical member of a frame
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than plastic moments in the frame. Based on the above procedure
the optimization algorithm can be written as follows

1. Optimization algorithm should be started by the initial
following design variables 

(12)

In other words the first iteration is commenced by the
upper bound of plastic moments and all connections are rigid.

2. Frame elastic analysis using above design variables is
done and internal forces are derived.

3. In order to find a criterion, the variable  is defined as  below

(13)

where is the maximum moment along member e,
obtained from elastic analysis. 

4. If sign is a positive number then should be increased and
if sign<0 then  should be decreased in order to move toward
optimum. If α to be greater than 1 it means that the member
can not sustain the obtained internal moment. Therefore, β
should be varied. Since α can not be greater than one, this
value is replaced by 1 at this stage. 

5. Following the true condition α=1, in this stage β is varied.
In order to achieve this, ζ is evaluated as below  

(14)

For α=1 and using Eq. (2), can be obtained and replaced by
Therefore

(15)

If ζi is little than one then βi should be decreased otherwise
βi is increased. It is noted that βi can not be grater than one or
little than zero. 

6. The structure is reanalyzed using new design variables and
the internal forces are derived. 

7. The evaluated internal moments are compared to to
be smaller than the permissible tolerance imposed by user,
thus the process is terminated. Otherwise, the algorithm should
be repeated from Stage 3.

4. Numerical examples

In order to illustrate the performance of the algorithm, the
following four examples are presented. The move limits are
considered to be 0.01 for α, and 0.005 for β in order to
approach to optimum.

Example 1. In order to verify the method a portal frame from
reference [24] is considered as shown in Figure 2(a). After
optimization process the moment distribution diagram is obtained
as illustrated in Figure 2(b). It is shown that the maximum error
occurred at the top left joint of the frame, which has a difference
of 0.7% compared to its exact value of maximum plastic moment.
This amount can be considered as negligible. 

The variation of design variables β1 and β2 for each member
during the optimization algorithm has been shown in Figure 3.
From Figure 3(d) it is observed that last hinges occurred in
element No. 4 after 170 iterations.   
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(a) (b)
Fig. 2. Portal frame of Example 1 (a) geometry, boundary

conditions and upper bounds of plastic moments (b) diagram of
the distribution of moments.
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Fig. 3. Variation of design variables   and  during optimization process for each finite element 
(a) element 1 (b) element 2 (c) element 3 (d) element 4.
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As the second part of this example, it is assumed that there is
no constraint for beam section. Thus, the upper bound of plastic
moment for beam can be considered to be a large value such as

kN.m. Therefore, by considering the multiplication of
length and plastic moment of a member as the weight of
member, the weight of the frame is assumed 15450 kN.m2 for
the first optimization step. After the optimization process the
distribution of moments is illustrated in Figure 4(a). From the
results, it is observed that the weight is reduced to 2628 kN.m2.
It is noted that in reference [24] the weight of frame is obtained
equal to 2640 kN.m2 by using the simplex method. 

It is interesting to note that the yield condition is not violated
because of using relaxed optimization space in this part.
However, the results are not changed much in comparison to
Figure 2(b). As shown in Figure 5(a) and 5(d) the columns
weight is not changed but the weight of beams is reduced
during the optimization and there is not any hinge in beams

according to Figures 5(b) and 5(c).  
Example 2. Inspired from the example of plastic moment

distribution method in Reference [2], a 1-bay and 3-story
frame depicted in Figure 6(a) is considered. For the first part
of the example, beams are assumed to be more relaxed. To
achieve this, the upper bounds of plastic moments for beams
are considered as shown in Figure 6(a). After optimization
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Fig. 5. Variation of design variables , β1 and β2 during optimization process for each finite element (a) element 1 (b) element 2 (c) element 3
(d) element 4.

Fig. 4. (a) Moment distribution in optimized frame (b) collapse mode

(a) (b) (c)
Fig. 6. 1-bay and 3-story frame (a) geometry, boundary conditions and upper bound of plastic moments 

(b) maximum obtained moment for each member (c) selected plastic moments in Reference [2].
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process the absolute value of maximum moment for each
member is obtained as depicted in Figure 6(b). Also, the
minimum selected plastic moments for beams and columns in
reference [2] are shown in Figure 6(c). It is observed that the
optimum weight of the frame is 23994 kN.m2 that is very close
to 24000 kN.m2 which is considered in Reference [2].

For the second part, minimum beam sections are considered
and columns are assumed more relaxed, as illustrated in Figure
7(a). The results are shown in Figure 7(b). Variation of weight
during the optimization process is depicted in Figure 8.

Example 3. The illustrated frame in Figure 9(a) is studied.
The upper bounds of the plastic moments and loading are
shown in this figure. After the optimization process, the
results show that the highest error with the magnitude 1.4%
occurs in the plastic moment of a beam. In this example, the
weight is decreased from 108849.6 to 89366.4. The design
variables for two elements i and j are varied as illustrated in
Figure 10.  

Example 4. A 2-bay pitched roof frame is considered.

Geometry, loading and the plastic moments of sections are
shown in Figure 11. The final maximum moments are
specified in Figure 12. The weight of frame is decreased from
15899 kN.m2 to 2163 kN.m2 during the optimization process. 

5. Conclusions

The proposed algorithm, based on evolutionary structural
optimization, can be used as a robust tool for optimal
plastic design of frames. Appropriate upper bounds of
plastic moments are first chosen according to the value of
applied loads. It is noted that some constrains, such as
assumption of minimum beam or column sections, can be
imposed. However, special care needs to be taken for
choosing plastic moments. After that, the proposed
optimization algorithm is used to derive the minimum
weight while the yield condition is not violated. The
accuracy of the results is shown via some examples from
the literature.
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Fig. 7. 1-bay and 3-story frame (a) geometry, boundary conditions
and upper bound of plastic moments (b) final design
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Fig. 8. Variation of weight during optimization iterations

Fig. 9. 2-bay and 6-story frame (a) geometry, boundary conditions and upper bound of plastic moments (b) final design
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Fig. 10. Variation of design variables ,  and   during optimization process for elements (a) i and (b) j

Fig. 11. A 2-bay pitched roof frame geometry, boundary conditions
and upper bound of plastic moments

Fig. 12. Final maximum bending moments
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